Deutsche Forschungsgemeinschaft approves 16 new Collaborative Research Centres

Bonn 02 June 2005Eight of the 16 new Collaborative Research Centres established by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as of 1 July 2005 are primarily focussed on the life sciences. As well as studying memory formation during sleep, the projects also focus on impaired development of the nervous system and immune system therapy. Two Collaborative Research Centres working in engineering aim to develop components with new physical properties, including components made from a single, solid piece. The Collaborative Research Centres that deal primarily with the natural sciences will deal with aspects such as molecular switching, spectral structures in mathematics and studies of quantum matter. Following the decision taken by the Grants Committee responsible for Collaborative Research Centres at its session on 23 and 24 May 2005 the DFG will now fund a total of 269 Collaborative Research Centres at 59 universities, including 23 Transregional Collaborative Research Centres, which are Collaborative Research Centres located at more than one site, as well as 16 Transfer Units, which convert the findings of basic research into practical applications through co-operation between scientists and end users. Additionally, funding for 26 Collaborative Research Centres was extended for a further funding period, including 4 from the humanities and social sciences and engineering, 8 from the natural sciences and 10 from life sciences. The funding for 2005 amounts to approximately 370 million euro.

Advertisement

Humans spend approximately a third of the time asleep. Studies to date have shown that sleep plays an important role in memory formation. The new Collaborative Research Centre "Plasticity and sleep" aims to investigate the plastic processes of memory formation during sleep which not only play a role for our cognitive memory, but also for our metabolism and immune system's memory. The researchers at the universities of Lübeck and Kiel, together with the Research Centre Borstel, assume that the memory-forming processes in these three distinct regions are controlled by a single higher-level control system during sleep and are - at least partially - based on the same mechanisms. The findings will also be used to study selected groups of patients directly in a clinical setting.

The main question addressed by the Collaborative Research Centre "Cells into Tissues: Stem Cell and Progenitor Commitment and Interactions during Tissue Formation" is how cells form tissue and how this tissue can be maintained. The researchers aim to combine the traditionally disparate disciplines of cell and developmental biology, bioengineering and clinical medicine in order to develop new therapeutic approaches for regenerative medicine in the long term.

The most frequent cause of death in industrialised countries remains cardiovascular disease, especially heart attacks, which are caused by complex deformation of the arteries in the heart. Studies have shown that genetic factors have a significant impact on an individual's risk of suffering from cardiovascular disease. It is therefore important to implement this finding not only therapeutically, but also diagnostically in the form of molecular functional imaging. The Collaborative Research Centre "Molecular cardiovascular imaging - from mouse to man" will focus primarily on the development and validation of molecular methods for new imaging methods and their application for characteristic models of cardiovascular disease.

Progress in genetics and molecular biology over the past two decades have made it possible to study development of the nervous system and impairment of this development at a new level - the molecular level. The Collaborative Research Centre "Impaired development of the nervous system" will bring researchers conducting basic research and paediatricians together to investigate the cellular, biochemical and neurophysiological mechanisms that are fundamental to the formation of a highly developed nervous system by means of genetic analysis in animals, defects in which can lead to severe mental disability. In so doing, the Collaborative Research Centre is both taking on a very current topic of interest and simultaneously building a bridge between molecular and clinical research.

Controlling the human immune system, on the one hand for treating cancer and on the other for treating auto immune diseases, is one of the greatest challenges facing modern medicine. The first palpable results in this area have given the Collaborative Research Centre "Immune therapy: from the molecular fundamentals to clinical practice" the impetus to study the molecular mechanisms which take place between the cells involved in these processes. The aim is to develop strategies for effective therapeutic methods. The research priorities include treatment of the auto immune disease multiple sclerosis and rheumatoid arthritis as well as a number of cancers such as leukaemia, skin cancer and various gynaecological and urological tumours.

Allergies have become a national disease in Germany, first and foremost the chronic lung disease asthma. Despite it being so widespread in the population, preventative measures and therapeutic methods for allergic lung inflammation are scarce and inadequate. In the Transregional Collaborative Research Centre "Allergic immune responses from the lungs" researchers at the universities of Marburg and Lübeck and the Technical University and Ludwig Maximilians University of Munich as well as from the Research Centre Borstel aim to reach a scientific understanding of the cellular and molecular mechanisms, which will in turn lead to novel preventative and therapeutic strategies. Based on the observation that children who grow up in a rural setting and are subjected to harmless bacteria and dust are less susceptible to allergies and asthma, the group aims to study how susceptibility to allergies arises and what role is played by the key mechanisms of congenital immunity.

Vascular diseases account, directly or indirectly, for approximately 70 percent of all deaths. These diseases include illnesses such as diabetes, stroke, heart attacks and tumours. So far, little has been know about the cellular and molecular changes which occur in the diseased arterial walls. This is the problem addressed by researchers from the universities of Frankfurt, Heidelberg and Freiburg as well as from the German Cancer Research Center in Heidelberg in the Transregional Collaborative Research Centre "Vascular Differentiation and Remodelling". The emphasis is on studies of the complex organotypical interaction between the cells in the vascular walls - a paradigm change in vascular medicine, since the focus is placed upon the role played by the vascular walls in the progress of disease.

The understanding of hearing in situations of complex stimuli is the topic of the Transregional Collaborative Research Centre "The active ear". Medics, psychologists, biologists and physicists will design and verify models to represent the way in which acoustic signals are processed, in order to then explain the mechanisms which are responsible for the exceptional abilities of the human auditory system, such as recognising individuals and understanding what they are saying in a general mass of voices. The objective of the researchers from the universities of Oldenburg and Magdeburg as well as from the Leibniz Institute for Neurobiology in Magdeburg is to develop a robust and optimised signal processing model for a variety of acoustic situations.


Leslie Versweyveld

[Medical IT News][Calendar][Virtual Medical Worlds Community][News on Advanced IT]