Foetal monitoring: a revolution in the monitoring of unborn babies

Nottingham 26 April 2007New technology, the size of a mobile phone, which could save the life of an unborn child, has been developed by scientists from the University of Nottingham. The device monitors the baby's heart for signs of potential danger. It is small and easy to use so that mother's-to-be can keep a regular check on their baby's heart beat without having to go into hospital and be attached to a machine. No other technology allows them to do this.

Advertisement

It took 15 years of pioneering work and enterprise, with funding from Action Medical Research and Venture Capital, to develop the foetal heart monitor. Researchers believe the device has the potential to benefit 70.000 at risk babies a year in the United Kingdom alone.

Statistics show that as many as 10 babies a day are stillborn in the United Kingdom and 10 percent of all pregnancies each year are high risk. The monitor lets doctors read signals produced naturally by the unborn baby's heart. They can then intervene if necessary and potentially save their lives.

The foetal monitor is the result of years of collaborative work between engineers and doctors at the University. The original research was carried out by Dr. John Crowe and Dr. Barrie Hayes-Gill in the School of Electrical and Electronic Engineering (EEE) and Professor David James and Dr. Margaret Ramsay in the School of Human Development. In 2005 the technology was spun out to create Monica Healthcare Ltd. Led by both Dr. Hayes-Gill and two ex PhD researchers from EEE, Dr. Carl Barratt and Jean Francois Pieri, the company has gone on to develop the monitor even further.

This highly sensitive device, which is able to detect 0.00000001 volts, has now been reduced to the size of a mobile phone. It can compute real time foetal readings and the resulting data can be transmitted by wireless technology to the nearest PC or handheld computer. The device has now passed all European Union regulatory safety standards and is currently undergoing clinical trials.

Dr. Barrie Hayes-Gill expects the device to go on sale in October this year. "To date we have successfully completed over 33 percent of the clinical trial. We expect to complete clinical trials in July 2007. This represents a tremendous achievement to turn a research device into a medically approved product in only two years - an experience which will place us in good stead for future medical products that we have on our horizon."

Currently hospital-based ultrasound is used to record babies' heart rates during pregnancy. While this technique has proven benefits, it needs to be administered by trained professionals and it is not suitable for routine, continuous, long-term monitoring. Dr. Barrie Hayes-Gill and Dr. John Crowe at the University of Nottingham recognised the need for a new technology that would fill these gaps.

One of the biggest obstacles in developing the foetal monitor was separating the baby's heart beat from the mother's signal. The team has successfully created a state-of-the-art device which can gauge both heart rates as well as foetal position. This unique home monitoring device could lead to a new approach in the management of pregnancy.

Dr. Margaret Ramsay noted it will play a key role in monitoring high-risk pregnancies. "For all these foetuses, the more we can monitor them, the greater the chance of us detecting that they are running into difficulties before it is too late to help them. This may involve urgent delivery of the foetus."

The device will be especially helpful in monitoring foetuses whose mothers have medical conditions like diabetes, auto-immune conditions such as systemic lupus erythematosus and Sjogren's syndrome and obstetric cholestasis. It will also be useful in monitoring foetuses identified as growing poorly or where it is suspected that the placenta is unhealthy and hence the foetus may become compromised due to lack of oxygen."

In England during 2004 and 2005 17 percent of inpatient cases for women in NHS hospitals were due to complications of pregnancy or childbirth. By helping to detect potential problems with unborn babies early and monitoring expectant mothers in their own homes it is hoped the device could relieve the pressure on in-patient stays and reduce hospital costs. As well as spotting potential complications the new monitor can be used to provide reassurance and mother-baby bonding.

The University of Nottingham undertakes world-changing research, provides innovative teaching and a student experience of the highest quality. Its academics have won two Nobel Prizes since 2003. The University is an international institution with campuses in the United Kingdom, Malaysia and China.


Leslie Versweyveld

[Medical IT News][Calendar][Virtual Medical Worlds Community][News on Advanced IT]