Tiny syringe pinpoints drug delivery

University Park 12 January 2009A tiny particle syringe composed of polymer layers and nanoparticles may provide drug delivery that targets diseased cells without harming the rest of the body, according to a team of chemical engineers. This delivery system could be robust and flexible enough to deliver a variety of substances.

Advertisement

"People probably fear the effects of some treatments more than they fear the disease they treat", stated Huda A. Jerri, graduate student, chemical engineering. "The drugs are poison. Treatment is a matter of dosage so that it kills the cancer and not the patient. Targeted treatment becomes very important."

Newer approaches to drug delivery include particles that find specific cells, latch on and release their drugs. Another approach allows the cells to engulf the particles, taking them into the cell and releasing the drug. However, the requirements for these delivery systems are complicated and challenging to implement.

The Penn State researchers' approach produces a more universal delivery system, a tiny spherical container averaging less than 5 microns or the diameter of the smallest pollen grains. The spheres are formed around solid micro-particles that are either the drug to be delivered or a substance that can be removed later leaving a hollow sphere for liquid drugs. They reported their results on-line in Soft Matter.

Alternating positive and negative layers of material form the micro-capsules. The capsules are created while attached to a flat surface so the section of the sphere touching the surface is not coated, leaving about 5 percent of the surface as an escape area for the drugs. The micro-capsule, excluding the exit hole, is then covered in a slippery, non-stick barrier coating.

"These are not the first micro-capsules for drug delivery developed, but a previous attempt had surfaces that stuck together and clumped", stated Darrell Velegol from Penn State. "We also designed the tiny hole in the sphere for controlled delivery and that is a new development."

Targeted drug delivery systems release their drug from the moment they enter the body. The micro-syringes, however, while releasing material continuously, do so only from the tiny hole in their surface and not from the other 95 percent of the sphere's surface. This will concentrate the drug at the target and reduce the amount of toxins circulating in the body.

"These particles are delivery vessels to which you can add whatever you want when you need it", stated Huda A. Jerri. "Drugs can be either solid - incorporated when the capsules are made - or liquid - filled later. Chemicals that target the diseased cells can be attached in a variety of ways."

To serve as viable, flexible drug delivery systems, these micro-capsules should be off the shelf and not completely tailor made for each application. The researchers tested the robustness of the micro-syringes by dehydrating and then reconstituting them. Their ability to withstand long periods dried out and then successfully rehydrate is important both for shelf life and because that is the way that liquid medications will be inserted in the micro-capsules as needed.

To ensure that the spheres refill, the researchers used a solution containing fluorescent dyes. The filling and emptying of the micro-capsules are controlled by the acidity of the liquid in which the tiny beads float. Successful rehydration and filling suggest that these micro-syringes could be manufactured and stored until needed. They could then be filled with the appropriate drug and have the proper targeting agent attached to treat specific diseases and patients.

"The masking process used to manufacture these micro-capsules is relatively inexpensive, current technology and is scalable", stated Darrell Velegol. "This means they could be mass produced."

The researchers, who included Huda A. Jerri, Darrell Velegol and Rachel A. Dutter, undergraduate in chemical engineering, still need to perfect the impermeable coating for the outside of their micro-syringes and test other aspects of the micro-syringes. The National Science Foundation supported this work.


Source: Penn State

[Medical IT News][Calendar][Virtual Medical Worlds Community][News on Advanced IT]